Mechanosensing in actin stress fibers revealed by a close correlation between force and protein localization.

نویسندگان

  • Julien Colombelli
  • Achim Besser
  • Holger Kress
  • Emmanuel G Reynaud
  • Philippe Girard
  • Emmanuel Caussinus
  • Uta Haselmann
  • John V Small
  • Ulrich S Schwarz
  • Ernst H K Stelzer
چکیده

The mechanics of the actin cytoskeleton have a central role in the regulation of cells and tissues, but the details of how molecular sensors recognize deformations and forces are elusive. By performing cytoskeleton laser nanosurgery in cultured epithelial cells and fibroblasts, we show that the retraction of stress fibers (SFs) is restricted to the proximity of the cut and that new adhesions form at the retracting end. This suggests that SFs are attached to the substrate. A new computational model for SFs confirms this hypothesis and predicts the distribution and propagation of contractile forces along the SF. We then analyzed the dynamics of zyxin, a focal adhesion protein present in SFs. Fluorescent redistribution after laser nanosurgery and drug treatment shows a high correlation between the experimentally measured localization of zyxin and the computed localization of forces along SFs. Correlative electron microscopy reveals that zyxin is recruited very fast to intermediate substrate anchor points that are highly tensed upon SF release. A similar acute localization response is found if SFs are mechanically perturbed with the cantilever of an atomic force microscope. If actin bundles are cut by nanosurgery in living Drosophila egg chambers, we also find that zyxin redistribution dynamics correlate to force propagation and that zyxin relocates at tensed SF anchor points, demonstrating that these processes also occur in living organisms. In summary, our quantitative analysis shows that force and protein localization are closely correlated in stress fibers, suggesting a very direct force-sensing mechanism along actin bundles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The actin crosslinking protein palladin modulates force generation and mechanosensitivity of tumor associated fibroblasts

Cells organize actin filaments into higher-order structures by regulating the composition, distribution and concentration of actin crosslinkers. Palladin is an actin crosslinker found in the lamellar actin network and stress fibers, which are critical for mechanosensing of the environment. Palladin also serves as a molecular scaffold for α-actinin, another key actin crosslinker. By virtue of it...

متن کامل

The Role of Actin Networks in Cellular Mechanosensing

Title of dissertation: THE ROLE OF ACTIN NETWORKS IN CELLULAR MECHANOSENSING Mikheil Azatov, Doctor of Philosophy, 2015 Dissertation directed by: Professor Arpita Upadhyaya Department of Physics Institute for Physical Sciences and Technology Physical processes play an important role in many biological phenomena, such as wound healing, organ development, and tumor metastasis. During these proces...

متن کامل

Two Distinct Actin Networks Mediate Traction Oscillations to Confer Focal Adhesion Mechanosensing

Focal adhesions (FAs) are integrin-based transmembrane assemblies that connect a cell to its extracellular matrix (ECM). They are mechanosensors through which cells exert actin cytoskeleton-mediated traction forces to sense the ECM stiffness. Interestingly, FAs themselves are dynamic structures that adapt their growth in response to mechanical force. It is unclear how the cell manages the plast...

متن کامل

The small GTPase Rif is an alternative trigger for the formation of actin stress fibers in epithelial cells.

Actin stress fibers are fundamental components of the actin cytoskeleton that produce contractile force in non-muscle cells. The formation of stress fibers is controlled by the small GTPase RhoA and two highly related proteins, RhoB and RhoC. Together, this subgroup of actin-regulatory proteins represents the canonical pathway of stress-fiber formation. Here, we show that the Rif GTPase is an a...

متن کامل

Effect of Actin Organization on the Stiffness of Living Breast Cancer Cells Revealed by Peak-Force Modulation Atomic Force Microscopy.

We study the correlation between cytoskeleton organization and stiffness of three epithelial breast cancer cells lines with different degrees of malignancy: MCF-10A (healthy), MCF-7 (tumorigenic/noninvasive), and MDA-MB-231 (tumorigenic/invasive). Peak-force modulation atomic force microscopy is used for high-resolution topography and stiffness imaging of actin filaments within living cells. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 122 Pt 10  شماره 

صفحات  -

تاریخ انتشار 2009